来一水AV@lysav|日本影院中文字幕不卡一区|国产成人综合野草|久久恋足舔美脚视频

撥號18702200545
產(chǎn)品目錄
展開

你的位置:首頁 > 技術(shù)文章 > 基于機器學習的ODS鋼硬度與屈服強度預測

技術(shù)文章

基于機器學習的ODS鋼硬度與屈服強度預測

技術(shù)文章

                                             

基于機器學習的ODS鋼硬度與屈服強度預測


摘要:氧化物彌散強化鋼(ODS)具有優(yōu)異的力學性能和顯著的耐輻照、耐腐蝕和抗氧化性能,是可用于第四代核反應堆的一種非常有前途的包殼材料。在這項工作中,結(jié)合不同微觀表征手段研究了八種ODS鋼的基體晶粒形貌、彌散形貌和氧化物顆粒相。并收集了不同ODS鋼的500多個數(shù)據(jù),并使用420個項目進行機器學習(ML)建模,將微觀結(jié)構(gòu)特征作為特征變量被引入到ML算法中。利用平均絕對誤差(MAE)、均方根誤差(RMSE)和決定系數(shù)()來對比不同模型的優(yōu)劣,從而選擇最佳模型,驗證材料性能的準確性。結(jié)構(gòu)表明,ML模型具有精確預測ODS鋼硬度和屈服強度的潛力,從而為新型ODS鋼的設(shè)計和優(yōu)化提供有價值的理論框架。

研究方法:1顯示了整個ML模型的工作流程圖,模型訓練的方法包括:邏輯回歸算法(LR)、支持向量回歸算法(SVR)、K鄰近回歸算法(KNR)、多層感知機算法(MLP)、核嶺回顧算法(KRR)、隨機森林回歸算法(RFR)以及梯度提升算法XGB)。從谷歌學術(shù)和CNKI收集了500多組關(guān)于ODS鋼的數(shù)據(jù)。該數(shù)據(jù)集包括化學成分、熱處理工藝、微觀結(jié)構(gòu)描述符(如氧化物顆粒的平均尺寸、數(shù)量密度、顆粒間距和體積分數(shù))和機械性能等信息。

基于機器學習的ODS鋼硬度與屈服強度預測


1. 模型工作流程圖。

1. 特征與描述的類型。

基于機器學習的ODS鋼硬度與屈服強度預測


結(jié)果:2給出了不同ODS鋼中基體晶粒的STEM-HAADF圖像和尺寸分布圖。ODS鋼的基體晶粒在垂直于擠軸的橫截面上是等軸的。

基于機器學習的ODS鋼硬度與屈服強度預測


2. 不同ODS鋼微觀組織尺寸分布圖。

十五個描述符之間的皮爾遜相關(guān)系數(shù)呈現(xiàn)在圖3中。圓圈越大,紅色越深,相關(guān)性越強??梢钥吹?, 、鋯和鈦之間以及鉻和鋁之間具有高度的存在線性相關(guān)性;納米顆粒的平均尺寸(AS)和其體積分數(shù)(VF)之間存在線性相關(guān)性。表明具有高線性相關(guān)性的兩個特征可以在某種程度上相互替代。

基于機器學習的ODS鋼硬度與屈服強度預測


3. 隨機森林篩選后各特征值組合的相關(guān)系數(shù)。

4顯示了六種硬度預測算法模型的RMSE、MAE值。XGB模型具有低的RMSE值與MAE值,最高的值,表明與其他回歸模型相比具有更好的預測準確性。

基于機器學習的ODS鋼硬度與屈服強度預測


4. 不同ML模型關(guān)于硬度數(shù)據(jù)集的預測。

5給出了不同模型在評估數(shù)據(jù)集上屈服強度的預測能力對比。從圖中可以

基于機器學習的ODS鋼硬度與屈服強度預測

看出,XGB模型具有最佳的預測性能。

5. 不同ML模型關(guān)于屈服強度的預測。


6給出了會影響硬度和屈服強度的輸入變量的重要性順序。熱處理工藝化學成分以及微觀結(jié)構(gòu)參數(shù)對硬度以及屈服強度的影響有所差異。對硬度的影響顯著的是熱處理工藝,而對屈服強度的影響的則是化學成分。

基于機器學習的ODS鋼硬度與屈服強度預測


6. 不同數(shù)據(jù)特征對硬度以及屈服強度影響的重要性順序

7顯示了五種ODS鋼的維氏硬度的測量值和XGB模型預測值,預測值與實驗測量值之間的誤差不大,均在可接受的范圍內(nèi)。表2為屈服強度的測量值與預測值的對比,誤差同意是可以接受的。

基于機器學習的ODS鋼硬度與屈服強度預測


7. 硬度的測量值與預測值對比


2. 屈服強度的測量值與預測值對比。

基于機器學習的ODS鋼硬度與屈服強度預測


結(jié)論:利用表征手段對ODS鋼中納米粒子的微觀結(jié)構(gòu)進行了表征。然后評估了ML模型在硬度和屈服強度數(shù)據(jù)集上的預測性能。選擇最佳模型來驗證硬度和屈服強度的預測值和實驗值的準確性:

1XGB模型對于硬度以及屈服強度預測的RMSE值和MAE值,值很高,表明XGB模型對ODS鋼的預測。

2)熱處理工藝對硬度的影響很大;化學成分對屈服強度的影響很大。

3)預測的硬度和屈服強度與相應的實驗值吻合良好,證實了XGB模型預測力學性能的有效性。研究有助于合金的設(shè)計與優(yōu)化,從而開發(fā)出具有更好機械性能的ODS鋼。

相關(guān)工作以“Prediction of hardness or yield strength for ODS steels based on machine learning"為題發(fā)表在Materials Characterization期刊上,論文第一作者為Tian Xing Yang,通訊作者為Peng Dou。




聯(lián)系我們

地址:天津市津南區(qū)泰康智達產(chǎn)業(yè)園 傳真:86-022-87081028 Email:sales@care-mc.com
24小時在線客服,為您服務!
凱爾測控試驗系統(tǒng)(天津)有限公司
關(guān)注微信

掃一掃,關(guān)注微信

版權(quán)所有 © 2024 凱爾測控試驗系統(tǒng)(天津)有限公司 備案號:津ICP備18003419號-2 技術(shù)支持:化工儀器網(wǎng) 管理登陸 GoogleSitemap

在線咨詢
QQ客服
QQ:2198388433
電話咨詢
02287081028
關(guān)注微信
日本在线A一区视频| 久久亚洲精品AB无码播放| 99久久久国产精品日本久久区一| 蜜臀AV在线| 粉嫩一区二区三区国产精品| 欧美虐SM另类残忍视频| 亚洲国产一区二区三区综合片| 亚洲欧美另类在线一区二区三区| 亚洲国产精品久久人人爱 | 国产精品99久久久久久WWW| 欧洲成人午夜精品无码区久久| 波多野结衣电影| 又大又紧又粗C欧美成人在线视频| 日韩一区二区三区在线中文字幕| CHINESE熟女熟妇1乱| 日本韩国男男作爱GAYWWW| 国产精品欧美激情melody| 免费高清理伦片A片在线观看| 极品少妇XXXXⅩ另类| 99精品一区二区三区欧美| 国产乱理伦片在线观看夜 | 黄片在线看一区二区三区| 中文人妻熟妇乱又伦精品| 亚洲AV片在线观看| 乱色熟女综合一区二区三区 | 亚洲午夜福利院在线观看| 亚洲精品无码久久久久秋霞| 2020人妻中文字幕| 国产精品51麻豆CM传媒| 狠狠躁18三区二区一区| 一夲道无码人妻精品一区二区| 无码人妻丰满熟妇区毛片| 荫蒂每天被三个男人添视频| 亚洲色汇聚亚洲11p| 疯狂的交换小雅小姿1~6| 色情久久久AV熟女人妻网站| 亚洲A∨无码天堂在线观看| 免费观看欧美猛交视频黑人| 免费A级毛片AV无码| 成人性爱视频在线观看| 国产欧美日韩成人中文字幕|